
Journal of eScience Librarianship e1211 | 1

ISSN 2161-3974

JeSLIB 2021; 10(3): e1211
https://doi.org/10.7191/jeslib.2021.1211

Abstract

Plain text data consists of a sequence of encoded characters or “code
points” from a given standard such as the Unicode Standard. Some of the
most common file formats for digital data used in eScience (CSV, XML, and
JSON, for example) are built atop plain text standards. Plain text
representations of digital data are often preferred because plain text
formats are relatively stable, and they facilitate reuse and interoperability.
Despite its ubiquity, plain text is not as plain as it may seem. The set of
standards used in modern text encoding (principally, the Unicode Character
Set and the related encoding format, UTF-8) have complex architectures
when compared to historical standards like ASCII. Further, while the
Unicode standard has gained in prominence, text encoding problems are
not uncommon in research data curation. This primer provides conceptual
foundations for modern text encoding and guidance for common curation
and preservation actions related to textual data.

Correspondence: Seth Erickson: sre53@psu.edu

Received: April 8, 2021 Accepted: June 4, 2021 Published: August 11, 2021

Copyright: © 2021 Erickson. This is an open access article licensed under the terms of the Creative
Commons Attribution License.

Disclosures: The author reports no conflict of interest.

Full-Length Paper

Plain Text & Character Encoding:

A Primer for Data Curators

Seth Erickson

The Pennsylvania State University, University Park, PA, USA

https://doi.org/10.7191/jeslib.2021.1211
mailto:sre53@psu.edu
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Journal of eScience Librarianship e1211 | 2

Plain Text & Character Encoding

JeSLIB 2021; 10(3): e1211
https://doi.org/10.7191/jeslib.2021.1211

Introduction

Character encoding is an often-unconsidered aspect of day-to-day computing. The
particularities of encoding, decoding, and displaying textual data can be taken for
granted much of the time. However, when things go wrong—when the characters
on the screen are very clearly the wrong characters—few technical problems
provoke the same degree of frustration and anxiety.

Text encoding errors are unsettling in part because plain text is meant to be stable
and ubiquitous—it’s just text, without any formatting or fancy embedded media.
What could be simpler? Digital preservationists and data curators hold plain text
formats in high regard because they require less specialized software than binary
formats. Sophisticated tools for displaying, editing, searching, filtering, and
generally “wrangling” plain text are commonplace on modern computers.
Similarly, programmers and system designers rely on plain text as a “universal
interface” that facilitates interoperability between systems (Raymond 2003). It’s
not an exaggeration to say that plain text is the glue that binds our digital ecology.
Some of the most common file formats for digital data used in eScience (CSV,
XML, and JSON, for example) are built atop plain text standards, meaning they are
defined as streams of human-readable textual elements.

In addition to providing some guidance for curating plain text and working with
character encoding standards, this primer presents a basic argument: plain text
isn’t so plain. Modern text encoding standards are complex when compared to
historical standards. Further, assumptions rooted in historical standards can
interfere with the effective treatment of textual data. For example, plain text is
often conflated with ASCII text (in fact, ASCII is just one plain text standard). This
assumption persists, in part because Unicode (the primary modern text standard)
was purposefully designed not to interfere with it: UTF-8 is backward compatible
with ASCII. An unfortunate consequence of this design choice is that an outdated
understanding of plain text, one rooted in the legacy of ASCII, has persisted
longer than it ought to have. Working with textual data, today, requires an
understanding of character encoding that goes beyond the “plainness” of ASCII.

This primer addresses the challenges of curating and preserving plain text in two
parts. The first two sections provide conceptual foundations for plain text and
introduce key terms from the Unicode Standard. The Unicode Character Set
(ISO/IEC 10646) and related formats (UTF-8 and UTF-16) are the focus here
because they are central to modern text encoding. Subsequent sections provide
guidance for common curation and preservation actions related to textual data:
(1) identifying the encoding standard for source data of various types and (2)
transforming data to format that supports the Unicode character set.

What is Plain Text?

Plain text is the rudimentary representation of text by a computer. It is
rudimentary in the sense that text is modeled as a linear sequence of symbols.

https://doi.org/10.7191/jeslib.2021.1211

Journal of eScience Librarianship e1211 | 3

Plain Text & Character Encoding

JeSLIB 2021; 10(3): e1211
https://doi.org/10.7191/jeslib.2021.1211

You won’t find hierarchical elements like pages and chapters defined by plain text
standards. At a low level, the things that computers process, store, and transmit,
are composed of bundles of binary information, or bytes. Plain text formats like
UTF-8, ASCII, and ISO-8859-1 each define a way to interpret a sequence of bytes
as a sequence of written elements. What these written elements consist of—be
they characters, accent marks, punctuations, ligatures, or emojis—varies from
standard to standard. The Unicode Standard names the constituent elements of
plain text code points. Plain text is defined more formally as “[c]omputer-encoded
text that consists only of a sequence of code points from a given standard, with no
other formatting or structural information” (The Unicode Consortium, n.d.).

From ASCII to Unicode

One of the most historically significant text standards, the American Standard
Code for Information Interchange (ASCII), defines 128 codes points corresponding
to the letters, numerals, punctuation symbols, and device control characters
commonly used by US computer manufactures and telecommunications companies
in the early 1960s. Because it is based on the English alphabet, ASCII does not
support accented characters or characters from non-Latin writing systems. To
support writing systems excluded by ASCII, additional standards were needed.
This led to an explosion in the number of encoding formats technology companies
needed to support if they hoped to reach broad, international markets. In the
1980s, tech companies (initially Xerox and Apple) coordinated their efforts and
started work on a single “universal character set” that they hoped would support
all the world’s writing systems. This effort culminated with the publication of the
first version of the Unicode Standard in 1991.

The Unicode Standard: a very brief introduction

The Unicode Standard defines a “universal character set”—a repertoire of letters,
symbols, ideograms, and other types of characters that can be used in plain text
data (The Unicode Consortium 2020). Unlike ASCII, the Unicode character set can
be expanded. The current version (13.0.0, as of this writing) consists of 143,859
coded characters covering 154 modern and historical scripts. Since the publication
of the first version in 1991, Unicode’s adoption has steadily grown. Today, the vast
majority of web content is encoded with UTF-8, one of several transformation
formats through which the standard is implemented (W3Techs 2017). Unicode’s
universality—the fact that it aims to support all existing and historical writing
systems—comes with added complexity, particularly when compared to historical
standards like ASCII. The following sections introduce some of the fundamental
aspects of the standard’s design.

Code Points and Abstract Characters

A Unicode code point is a numerical value between 0 and 1,114,112 (in decimal),
or 0x0 and 0x10FFFF (in hexadecimal). A common convention, used here, is to
present code point values in hexadecimal notation, preceded by ‘U+’. In the

https://doi.org/10.7191/jeslib.2021.1211

Journal of eScience Librarianship e1211 | 4

Plain Text & Character Encoding

JeSLIB 2021; 10(3): e1211
https://doi.org/10.7191/jeslib.2021.1211

standardization process, values in this range are assigned to abstract characters,
“unit[s] of information used for the organization, control, or representation of
textual data” (The Unicode Consortium 2020). The assignment of a code point to
an abstract character results in a coded character. Generally speaking, successive
versions of the Unicode standard introduce new coded characters that can be used
to compose plain text data.

Table 1: Four coded characters (code point/abstract character pairs) from the
Unicode character set

Abstract characters do not necessarily correspond to units of text as one might
expect. Table 1 illustrates abstract characters that might otherwise be regarded as

either smaller than a character (the diaeresis mark, ◌̈) or ‘larger’ (the ligature, fi).
Further, abstract characters can be combined to produce, for example, accented
characters: the capital letter ‘A’ with diaeresis (Ä) can be encoded in Unicode as
either a single code point (U+00C4) or as the composite of two code points
(U+0041 followed by U+0308). Much more can be said about code points, abstract
characters, and composite characters. For more on this, see (The Unicode
Consortium 2019, Ch. 2).

Unicode’s Encoding Formats: UTF-8 and UTF-16

The Unicode Character Set is one of two standards involved in the encoding and
decoding of textual data; it defines the collection of abstract characters that may
be used in plain text data. However, the actual representation of code point values
in data is handled by a separate standard: a character encoding format. Several
encoding formats implement the Unicode Character Set but the most well-known
are UTF-8 and UTF-16. These differ in the way they represent a sequence of code
points as a byte sequence that can be stored as a file or transferred over a
network.

UTF-8

UTF-8 is a variable width encoding format, meaning the number of bytes used to
represent a code point varies based on the code point’s numerical value. UTF-8
uses one byte to represent each of the first 128 code points (U+0000 - U+007F),

Glyph Code Point Abstract Character Name

A U+0041 LATIN CAPITAL LETTER A

Ä U+00C4 LATIN CAPITAL LETTER A WITH DIAERESIS

◌̈ U+0308 COMBINING DIAERESIS

fi U+FB01 LATIN SMALL LIGATURE FI

https://doi.org/10.7191/jeslib.2021.1211

Journal of eScience Librarianship e1211 | 5

Plain Text & Character Encoding

JeSLIB 2021; 10(3): e1211
https://doi.org/10.7191/jeslib.2021.1211

the range corresponding to the US-ASCII character set. Code points in the range
U+0080 - U+07FF are encoded with two bytes; U+0800 through U+FFFF require
three bytes; and four bytes are required for code points between U+10000 and
U+10FFFF. UTF-8’s chief advantage is that it is backward compatible with
US-ASCII.

UTF-16

UTF-16 is a variable width encoding format (like UTF-8) that uses two bytes to
represent code points between U+0000 and U+FFFF (however U+D800 - U-DBFF
are excluded). Four bytes are required for code points in the range U+010000
through U+10FFFF.UTF-16 is less efficient than UTF-8 for encoding written English,
but more efficient for writing systems using coded characters in the U+0800 to
U+FFFF range. Many of the most widely used writing systems, including Chinese,
Japanese, Korean, and Devanagari, are more efficiently encoded with
UTF-16 than UTF-8.

Curation and Preservation Concerns

Preferred Formats

UTF-8 and UTF-16 are the US Library of Congress’s recommended formats for
textual data (Library of Congress, n.d.). UTF-8 and UTF-16 are based on the
Unicode Character Set, so they can be used to encode the same character
information. UTF-8 is currently the dominant text encoding format on the web, and
newer software applications often use it as the default format for plain text data
(W3Techs 2017). There are, however, good reasons to prefer UTF-16 over UTF-8
in some circumstances. As described above, UTF-16 is more efficient than UTF-8
for the purposes of encoding characters used in the some of the world’s most
widely adopted writing systems (those of South and East Asia, particularly). Data
in which these characters are heavily used may require less storage space when
encoded with UTF-16 than it would with UTF-8.

Format Identification

Identifying the format that plain text data was encoded with is necessary for using
the data effectively. Today, it is often safe to assume that plain text is encoded
using UTF-8, due to its increased adoption as a default text format in operating
systems and software applications. Nevertheless, curators and preservationists—
particularly those working with historical data or data produced with older
software—should be prepared to confirm the format for textual data.

The text format may be included in the metadata or the format can be inferred
from other features of the data. High-level formats and protocols based on plain
text often require the use of a particular encoding format or they include
mechanisms to declare the format within the data itself. Some examples are listed
below.

https://doi.org/10.7191/jeslib.2021.1211

Journal of eScience Librarianship e1211 | 6

Plain Text & Character Encoding

JeSLIB 2021; 10(3): e1211
https://doi.org/10.7191/jeslib.2021.1211

• XML: The prologue section of an XML document should include the
character encoding used in the remainder of the document. For example:
<?xml version=“1.0” encoding=“utf-8”?>

• HTML: HTML documents often include a meta tag defining the content’s
character encoding, for example: <meta http-equiv="content-type"
content="text/html; charset=UTF-8" />

• Excel spreadsheet: Since 2010, Excel spreadsheets (.xslx files) are XML
files, encoded with UTF-8.

• JSON: The JSON (Javascript Object Notation) standard states that valid
JSON objects are encoded with UTF-8.

Note, however, that the declared format, or the format inferred by the file type,
may not correspond to the format used to encode the data. Mismatch between the
declared format and the actual format is a source of text encoding problems,
described below.

Identification of the encoding format based on the content of the data itself is
often necessary. Many common file formats do not provide a mechanism to
declare the text encoding format, nor do they require the use of a particular
encoding format. One of the most widely used data standards, .CSV (comma
separated values), does not include a way of specifying how the text is encoded.
Further, even in cases where the encoding format is declared (for example, in an
XML file’s prologue), the file’s content may have been encoded with a different
format than the one specified.

Many software tools, like web browsers, word processors, and text editors include
features to guess the format of a given piece of text data. Plain text editors
oriented toward software development often include this feature. The file
command, which can be used from the terminal on Mac OS, Linux, and other
Unix-based operating systems, tries to guess a text file’s format based on analysis
of the first portion of the file. Finally, programming libraries, like chardet for
Python, can be used to build scripts and software tools that perform
auto-detection.

Text Encoding Problems

Invalid Text Data

When plain text data is decoded using a different standard than the one used to
encode it, the text may appear garbled or corrupt. This problem is sometimes
referred to as “Mojibake.” One way Mojibake manifests is with the appearance of
the replacement character (�) in unexpected parts of the text. The replacement
character is a special character used by decoding software to indicate invalid input
data. For example, if the text “Andrés” is encoded with Windows-1252 (a format
used in older versions of Microsoft Windows) and then decoded with UTF-8, the
text may appear as ‘Andr�s’ because the byte used to represent “é” in

https://doi.org/10.7191/jeslib.2021.1211

Journal of eScience Librarianship e1211 | 7

Plain Text & Character Encoding

JeSLIB 2021; 10(3): e1211
https://doi.org/10.7191/jeslib.2021.1211

Windows-1252 is not valid UTF-8.

Command Li ne Exampl e (us i ng Mac OS Ter mi nal)

Ter mi nal decodes as UTF- 8, r epl acement char ac t er appear s as ' ?'

The f i l e dat a. t x t cont ai ns an i nval i d codepoi nt (“ ?”)

$ cat dat a. t xt

> Andr ?s , 1920, . . .

We can t es t whet her t he f i l e i s val i d UTF- 8 (i t i sn' t)

$ i conv - f UTF- 8 dat a. t xt

> i conv : dat a. csv : 1: 4: i ncompl et e char ac t er or shi f t sequence

Guess t he f or mat wi t h t he f i l e command

$ f i l e dat a. t xt

> dat a. t x t : I SO- 8859 t ex t , wi t h no l i ne t er mi nat or s

Use i conv t o r e- encode as UTF- 8 and di spl ay dat a cor r ec t l y .

$ i conv - f I SO- 8859- 1 - t UTF- 8 dat a. t xt

> Andr és , 1920, . . .

Misinterpreted Text Data

Plain text data can be technically valid in two different encoding formats but yield
different characters depending on which format is used to decode it. This can
cause decoding errors that are more difficult to spot than those caused by invalid
input data because they do not result in tell-tale replacement characters. Quick
format validation checks of the text won’t help either. For example, when the left
double quotation mark (“) is encoded with UTF-8 and decoded with
Windows-1252, the characters (â€œ) will appear instead of the quotation mark.
This is because the sequence of bytes used by UTF-8 to represent (“) is the same
as the sequence of bytes representing (â€œ) in Windows-1252. The data is
technically valid in both formats, however its interpretation as UTF-8 is perhaps
more linguistically meaningful.

Invalid text data and misinterpreted text data are symptoms of the same
underlying issue: the data was decoded with a different format than the one used
to encode it; both problems can be addressed by identifying the correct format for
decoding the data (see the previous section) and, if necessary, re-encoding the
text to a preferred format. (Some techniques for re-encoding are discussed in the
next section).

The python library ftfy (Speer 2019) can be used to identify and correct mojibake
of this variety.

https://doi.org/10.7191/jeslib.2021.1211

Journal of eScience Librarianship e1211 | 8

Plain Text & Character Encoding

JeSLIB 2021; 10(3): e1211
https://doi.org/10.7191/jeslib.2021.1211

>>> pr i nt (f i x_t ex t (' Thi s t ex t shoul d be i n â€œquot esâ€\ x9d. '))

Thi s t ex t shoul d be i n " quot es" .

Mixed Format Data

When text data encoded with different formats are combined in the same file or
data stream there is no “correct” format that applies to the data as a whole. As a
result, decoding the data with one format might work for one part of the text but
break another. This problem often plagues websites where user-generated content
using different standards is combined on the same page. The solution—a tedious
one—is to identify distinct segments of the data that share a common format and
re-encode each segment until the entire byte stream shares a single format.

Filenames

While the adoption of the Unicode standard has greatly facilitated the range of
possible characters that can be represented in textual data, filenames introduce
additional considerations worth mentioning. The file system is the part of the
operating system that determines how files are named and identified. Different file
systems have different rules concerning about how files are named and the
characters that can be included. In addition, correcting text encoding errors in
filenames can be challenging because the same tools used to re-encode file
contents don’t help with file names (Blewer 2019).

The convmv command can be used on Unix-based operating systems (Linux and
MacOS) to re-encode filenames:

$ convmv - f OLD_ENCODI NG - t UTF- 8 ol d- f i l e. t xt - o new- f i l e. t xt

Digital preservation and curation workflows often recommend removing non-ASCII
characters from filenames. However, as Arroyo-Ramírez (2016) notes, the practice
of removing “illegal” (i.e., accented) characters from filenames can negatively
impact the context and meaning of the files.

Tools for Working with Plain Text Data

f i l e is a command line program available on Mac OS, Linux, and other
Unix-based operating systems that characterizes files. It can be used to guess the
format for a text file.

i dent i f y t he f or mat of t he dat a. t x t f i l e

$ f i l e dat a. t xt

> dat a. t x t : I SO- 8859 t ex t , wi t h no l i ne t er mi nat or s

i conv is a command line program (for Mac OS, Linux, and other Unix-based
operating systems) that is used to convert text from one encoding to another. In
the example here, it is used to re-encode a file using Window-1225 as UTF-8. (You

https://doi.org/10.7191/jeslib.2021.1211

Journal of eScience Librarianship e1211 | 9

Plain Text & Character Encoding

JeSLIB 2021; 10(3): e1211
https://doi.org/10.7191/jeslib.2021.1211

can get a list of supported formats with the i conv - l command).

Conver t dat a. csv f r om Wi ndows - 1252 t o UTF- 8, save as dat a. ut f 8. csv

$ i conv - f WI NDOWS- 1252 - t UTF- 8 dat a. csv > dat a. ut f 8. csv

i conv can also be used to test whether a file’s contents are valid with respect to a
particular format. Note that validating a file with respect to a given format does
not guarantee that the file was originally encoded with that format; it only means
the file could be decoded without error.

Tes t whet her dat a. csv i s val i d UTF- 8 (f i l e cont ai ns i nval i d UTF- 8)

$ i conv - f UTF- 8 dat a. csv

> i conv : dat a. csv : 17: 16: cannot conver t

convmv is a command line program available on Mac OS, Linux, and other
Unix-based operating systems that can be used to rename and re-encode
filenames:

$ convmv - f OLD_ENCODI NG - t UTF- 8 ol d- f i l e. t xt - o new- f i l e. t xt

Conclusion & Recommendations

This primer has introduced modern text encoding with Unicode to help curators
resolve potential problems in research data sets. Working with research data often
means working with plain text–common data formats, like XML, JSON, and CSV,
are based on plain text standards. While the adoption of Unicode has helped
alleviate the challenge of conflicting text standards, text encoding errors are not
uncommon in data curation work. Further, as this primer has shown, the Unicode
standard is significantly more complex than historical standards like ASCII.
Unicode is an expandable, “universal” character set with multiple encoding
formats, including UTF-8 and UTF-16.

The following recommendations provide guidance for curators working with
text-based datasets.

• Unless circumstances demand otherwise, plain text data should be encoded
using a Unicode format (e.g., UTF-8). UTF-8 is generally recommended
over UTF-16.

• When working with text-based formats that include an encoding declaration
(such as XML’s encoding attribute), confirm that the data was encoded
using the format in the declaration.

• When working with text-based formats that require a particular encoding
format (such as JSON, which requires UTF-8), confirm that the data was
encoded using the appropriate format.

• When working with text-based formats that do not declare or imply the

https://doi.org/10.7191/jeslib.2021.1211

Journal of eScience Librarianship e1211 | 10

Plain Text & Character Encoding

JeSLIB 2021; 10(3): e1211
https://doi.org/10.7191/jeslib.2021.1211

underlying text format (like CSV), curators should expect the data to be
encoded with a preferred encoding format (UTF-8 or UTF-16) and they
should confirm that this is the case.

• When possible, curators should work with researchers to resolve text
encoding problems in the researcher’s data sets. If curators must transform
or convert previously deposited data to resolve text encoding problems,
original versions should always be kept.

References

Arroyo-Ramírez, Elvia. 2016. “Invisible Defaults and Perceived Limitations: Processing the Juan
Gelman Files.” Medium. https://medium.com/on-archivy/invisible-defaults-and-perceived-limitations-
processing-the-juan-gelman-files-4187fdd36759

Blewer, Ashley. 2019. “Artist_Exhibition-Copy (FINAL)(2).Mov: Preserving Diacritics in Filenames as
Significant Properties in Media Conservation.” Ashley Blewer Blog. https://bits.ashleyblewer.com/
blog/2019/06/17/artist-exibition-copy-final-2-preserving-diacritics-in-filenames-as-significant-
properties-in-media-conservation

Library of Congress. n.d. “Recommended Formats Statement.”
https://www.loc.gov/preservation/resources/rfs/index.html

Raymond, Eric S. 2008. The art of UNIX programming. Addison-Wesley.

Speer, Robyn. 2019. “Ftfy (Version 5.5.1).” Zenodo. https://doi.org/10.5281/zenodo.2591652

The Unicode Consortium. 2019. The Unicode Standard Version 12.1.0. Mountain View, CA: Unicode
Consortium.

————. 2020. The Unicode Standard Version 13.0.0. Mountain View, CA: Unicode Consortium

————. n.d. “Glossary of Unicode Terms.” https://www.unicode.org/glossary

W3Techs. 2017. “Historical Trends in the Usage of Character Encodings, September 2017.”
https://w3techs.com/technologies/history_overview/character_encoding

https://doi.org/10.7191/jeslib.2021.1211
https://medium.com/on-archivy/invisible-defaults-and-perceived-limitations-processing-the-juan-gelman-files-4187fdd36759
https://medium.com/on-archivy/invisible-defaults-and-perceived-limitations-processing-the-juan-gelman-files-4187fdd36759
https://bits.ashleyblewer.com/blog/2019/06/17/artist-exibition-copy-final-2-preserving-diacritics-in-filenames-as-significant-properties-in-media-conservation
https://bits.ashleyblewer.com/blog/2019/06/17/artist-exibition-copy-final-2-preserving-diacritics-in-filenames-as-significant-properties-in-media-conservation
https://bits.ashleyblewer.com/blog/2019/06/17/artist-exibition-copy-final-2-preserving-diacritics-in-filenames-as-significant-properties-in-media-conservation
https://www.loc.gov/preservation/resources/rfs/index.html
https://doi.org/10.5281/zenodo.2591652
https://www.unicode.org/glossary
https://w3techs.com/technologies/history_overview/character_encoding

