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Abstract

Objective: The rapidly increasing prevalence and application of machine learning (ML) across disciplines 

creates a pressing need to establish guidance for data curation professionals. However, we must first 

understand the characteristics of ML-related objects shared in generalist and specialist repositories and 

the extent to which repository metadata fields enable findability and reuse of ML objects.

Methods: We used a combination of API queries and web scraping to retrieve metadata for ML objects in 

eight commonly used generalist and ML-specific data repositories. We assessed both metadata schema 

and characteristics of deposited ML objects, within the context of the widely adopted FAIR Principles. 

We also calculated summary statistics for properties of objects, including number of objects per year, 

dataset size, domains represented, and availability of related resources.
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Abstract Continued

Results: Generalist repositories excelled at providing provenance metadata, specifically unique 

identifiers, unambiguous citations, clear licenses, and related resources, while specialist repositories 

emphasized ML-specific descriptive metadata, such as number of attributes and instances and task 

type. In terms of object content, we noted a wide range of file formats, as well as licenses, all of which 

impact reusability.

Conclusions: Generalist repositories will benefit from some of the practices adopted by specialists, 

and specialist repositories will benefit from adopting proven data curation practices of generalist 

repositories. A step forward for repositories will be to invest more into use of labels and persistent 

identifiers to improve workflow documentation, provenance, and related resource linking of ML objects, 

which will increase their findability, interoperability, and reusability.

Introduction

As a result of increased access to data and computational resources, the barrier of entry for using machine 
learning (ML)—which involves training algorithms to identify patterns in data and make predictions based 
on previously unencountered data (Louridas and Ebert 2016)—in research has been substantially lowered. 
This has led to a corresponding growth in the use of ML across various disciplines. As a case in point, a 
search of arXiv for “machine learning” in September 2022 returned nearly 147,000 pre-prints, with almost 
43,000 of those from the previous 12 months. Similarly, a September 2022 search of Web of Science for 
“machine learning” returned over 300,000 results, with approximately half published since 2020. 

Many repositories, including those managed by academic libraries, are currently receiving research data 
submissions composed of apparent ML objects, or can anticipate receiving an increasing number of ML 
objects in the near term. Consequently, understanding the “ML object”—which we refer to here as the 
published set of components that comprise the ML research output, i.e., data, code, model, and associated 
documentation (see Publio et al. 2018 for example framework)—is becoming a necessity for the data 
curation community. Some ML practitioners are working to develop and recommend standards for 
sharing ML objects, as are research data communities like the Research Data Alliance. However, to date, 
data curation professionals have lacked clear and consistent guidance for best practices for ML specifically, 
although standalone guidelines exist for many data and code formats, e.g., Data Curation Network primers.

Before standardized best practice recommendations can be developed, the data curation community must 
first understand the current state of documentation and sharing with regards to ML research outputs. That is: 
what components of ML are being publicly shared and to what extent are metadata appropriately leveraged 
to enable findability, interoperability, and reuse of ML research outputs?
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To provide a framework for this question, we use the FAIR (Findable, Accessible, Interoperable, Reusable) 
Principles (Wilkinson et al. 2016), which were written with research data in mind and which recent papers 
(Lamprecht et al. 2020; Katz, Gruenpeter, and Honeyman 2021a) have proposed extending to research 
software. Further, Samuel, Löffler, and König-Ries (2021) and Katz, Psomopoulos, and Castro (2021b) have 
advocated for applying FAIR guidelines to ML objects, which are a complex synthesis of software, data and 
workflows.

Findable for ML

For data to be accessible, interoperable, or reusable, they must be findable (Juty et al. 2020). In the case of ML 
objects, there is an additional consideration of the complex dependencies between components that make up 
the ML research output. All of these components, such as the training and test datasets, algorithms, and tasks, 
have the potential to be assigned identifiers if they are clearly and consistently labeled, and independently 
accessible in discrete locations (URLs). With the potential for distribution of such components scattered 
across multiple repositories and platforms, identifiers and linkages between related resources are especially 
crucial for providing context to individual, potentially reusable, ML components.

Accessible for ML

Accessibility in the framework of the FAIR principles is a repository system-level requirement, i.e., an http 
protocol, rather than data-level or within the purview of an individual depositor. In the context of ML, 
accessibility may be significantly improved via software availability as well as programmatic accessibility 
(and interoperability) at scale, through application programming interfaces (APIs) (see Lamprecht et al. 
2020). Accessibility beyond the existence of automated access to metadata is outside the scope of this study, 
and is not addressed further in the analysis.

Interoperable for ML

The relatively recently proposed metadata schema ML-Schema, which leverages several state-of-the-art ML 
metadata schemas (MEX, OntoDM-core, Exposé, and DMOP), has the potential to improve interoperability 
of ML experiments regardless of computing platform (Publio et al. 2018). In addition to providing  
within-experiment descriptive documentation and community supported vocabularies, ML objects should 
explicitly link using persistent identifiers (PIDs), when available, and URLs when not, to external resources 
that provide context for the research therein. These resources may include training data located elsewhere, 
publicly available source code or algorithms used in the study, and articles reporting the results of the ML 
research.
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Reusable for ML

Much of the research and discussion on the Reusable principle of FAIR is focused more narrowly on 
reproducibility, rather than more generic reuse. ML experiment reproducibility gaps are often a consequence 
of incomplete and/or poorly documented components (training data, source code or algorithms and code 
interdependencies), properties (iterations, parameters, configuration, methods, techniques, workflows), 
data provenance, and computing environments (software packages and versions) (Pineau et al. 2020; Samuel, 
Löffler, and König-Ries 2021), all of which impact reusability as well. 

ML experiment documentation using a formal metadata schema can help to fill this documentation gap 
and enable scientists and engineers to assess their credibility (Esteves et al. 2015) and suitability for their 
particular application, thereby facilitating reuse. While the concept of data provenance has not gained 
much traction in ML communities (Gebru et al. 2021) it is a core element of richly described research 
data and crucial in the case of ML to avoid producing outputs based on incomplete, incorrect, or biased 
data (Reference Model for an Open Archival Information System, World Economic Forum Global Future 
Council on Human Rights, 2018). Checklists are also emerging as a tool for closing these gaps (Norgeot et al. 
2020; Pineau et al. 2020; Sengupta et al. 2020; Gebru et al. 2021) and tools that support reproducibility and 
enhance reusability are on the rise, such as the Jupyter Notebook application extension, ProvBook, which 
captures and saves provenance for experiment iterations (Samuel and König-Ries 2018). 

Objectives

While ML-specific tools and practices described above are useful for ML practitioners, they were not 
necessarily developed for research data curators unfamiliar with the intricacies of ML workflows, nor do 
they necessarily fit into existing repository schemas. Of more immediate concern, we don’t have a strong 
sense of how well positioned current platforms are for hosting and sharing ML research.

Therefore, the specific objectives for this project were to survey ML research objects currently published 
in commonly used scientific data repositories in order to: (1) assess how metadata fields vary across 
data repositories likely to host ML objects, within the framework of FAIR principles, (2) document  
high-level characteristics of ML objects that are currently shared in these repositories, with an emphasis on 
characteristics related to reusability, and (3) identify strengths and growth areas for repositories as well as 

areas for greater awareness for data curators and researchers.

Methods

When considering where ML outputs might be deposited, we identified two main categories: specialist 
repositories and generalist repositories.

We define “specialist repositories” as repositories that specialize in, or are designed for, ML data, code, 
or other components. The repositories in this group are not an exhaustive collection of ML-centric 
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repositories, but rather, represent some of the more popular and widely used repositories, as determined 
during communications with ML researchers from UC San Diego as well as our own experiences interacting 
with faculty and students engaged in ML research. 

The specialist repositories assessed in this study are:

•	 Kaggle. Kaggle is a repository that serves the ML and data science communities, and is 
particularly popular with students and others interested in learning data science. The platform 
hosts datasets and notebooks (kernels) that perform ML or other data science tasks using the 
available data. Kaggle limits datasets to 100 GB.

•	 OpenML. This repository classifies ML components into five semi-hierarchical categories: 
datasets, tasks, flows, runs, and studies. We focus primarily on datasets, as they are most 
comparable to other repository content in terms of structure, use, and available metadata, 
with discussion of flows (ML pipelines or scripts that include library dependencies and 
hyperparameters) and runs (performance evaluations of a specific flow on a specific task) 
where relevant. OpenML has no defined limit for dataset size.

•	 UC	Irvine	Machine	Learning	Repository. Hosted by the University of California, Irvine, this 
repository hosts training and test datasets, with reuse as the explicit goal of the repository 
objects. No defined limit for dataset size. We refer to this repository by the acronym UCIMLR, 
henceforth.

We define “generalist repositories” as discipline-agnostic repositories with flexibility in structure and 
documentation. The generalist repositories included in this study are: Figshare, Zenodo, Harvard Dataverse, 
Dryad, and the UC San Diego Library Digital Collections, the former of which are frequently recommended 
by publishers (e.g., Springer Nature, PLOS (also includes Kaggle), AGU) and funders (e.g., NIH). For a 
comprehensive comparison of the basic characteristics of these and other generalist repositories, see Stall 
et al. 2020 and Supplemental Table A. The three specialist repositories, as well as Figshare and Zenodo, 
are non-curated, meaning that curation services are not offered at the object level after submission, while 
Harvard Dataverse, Dryad, and UC San Diego Library offer variable levels of curation.

Metadata retrieval

Object metadata were retrieved via official repository APIs when available. For repositories in which a 
public-facing API was not available, or the API returned incomplete metadata, web scraping was used to 
extract metadata present on an ML object webpage when doing so did not violate site terms of service 
(Table 1, Appendix). Records in six of the repositories were queried across indexed metadata fields for the 
string “machine learning”1 with the intent to capture all objects that were apparently depositor-identified as  

1  Different repositories may index different subsets of metadata fields for string searches. We do not attempt advanced 
search across select fields, but rather use the default primary search for each repository.
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ML-related. For OpenML and UCIMLR, in which all objects were considered explicitly ML-related, all 
records were retrieved (Table 1). 

Metadata was retrieved from the listed repositories during the last two weeks of December 2021.2 Code 
used to access all APIs was developed using Python, with tested compatibility back to Python 3.9.2. 
This implementation relies heavily on packages such as ‘requests’ for the public APIs, and ‘selenium’ and 
‘beautifulsoup4’ for web scraping when necessary. The code developed to access APIs (not including web 
scraping) is available as a user interface called PyCurator (Baluja 2022).

Table 1: Properties of the Metadata Retrieval. Records matching “machine learning” were retrieved 
from the eight listed repositories via a combination of API, web scraping, and curator tools. For the 
specialist repositories OpenML and UCIMLR, all records were retrieved. Further details on search and 
return parameters are detailed in repository-specific API documentation.

Repository Access Method Query Term Query Type Granularity of 
Returned Records

Dryad API, Scrape "machine learning" N/A File

UC San Diego Library Export tool 
(curators only) "machine learning" N/A File

Harvard Dataverse API, Scrape "machine learning" Dataset
File Object

Figshare API "machine learning"
Article (Item)
Collection
Project

Object

Zenodo API "machine learning" N/A Object

UCIMLR* Scrape N/A N/A Object

OpenML API, Scrape N/A Dataset Object (=File)

Kaggle API "machine learning" Dataset
Kernel Object

* UCIMLR was in the process of updating their website during this project. We scraped the beta site:  
https://archive-beta.ics.uci.edu.

2  Some repositories may have made changes to metadata structure and collection since this time; results are reflective 
of the state of repository metadata at this moment in time. 

https://doi.org/10.7191/jeslib.685
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Metadata Crosswalk

In order to compare ML object characteristics across repositories, we created a metadata crosswalk—a 
mapping of the equivalent properties of the metadata schemas across the eight repositories (see Supplemental 
Table B). Where available, we relied on publicly available documentation to determine repository metadata 
schema. It was necessary in some cases to compare examples of extracted data against content exposed 
on corresponding landing pages to understand the field type. Following completion of the crosswalk, we 
calculated summary statistics for metadata fields of interest in order to directly compare repository ML 
object characteristics such as file type, license type, dataset size, etc. See project GitHub repository (Labou 
and Baluja 2024) or Labou et al. 2024 for code used in calculations.

Based on findings from the crosswalk, we created a matrix to visualize FAIR Principle “compliance” by each 
repository, focusing on the FAIR Principle elements that are central to basic findability, interoperability, 
and reuse. We distinguished between full compliance, partial, and none for a subset of metadata fields as 
measured against the recommendations associated with each relevant element of FAIR. As an example, 
Figshare uses the New Zealand Standard Research Classification (ANZSRC) for Fields of Research (FoR) for 
research domain category (“Categories” in the object submission form and “Domain” in our matrix) and is 
therefore in full compliance with FAIR Principle I2. A repository was considered to be in partial compliance 
if they collected a particular type of metadata but did not make it easily accessible via a designated field or 
fully contextualize it. For instance, Harvard Dataverse collects related works but does not include a qualified 
reference that establishes the relationship to the item being deposited, as recommended by FAIR Principle I3. 
Similarly, UC San Diego Library supports a free-text field for recording funding information, but individual 
elements like funder and grant number are not stored in designated fields, potentially reducing findability 
and interoperability.

Results

FAIRness of the Repositories

The FAIR Matrix (Table 2) showed thematic variability between repositories. In general, generalist 
repositories collect traditional descriptive metadata, in alignment with FAIR sub-principle “F2: Data are 
described with rich metadata,” including a PID, a key agent for findability. Of the specialist repositories, only 
UCIMLR generates PIDs. Generalist repositories are in compliance with the sub-principle, “R1.2: (Meta)
data are associated with detailed provenance,” as far as enabling citability and, in some cases, data creation 
or generation methods. Specialist repositories gather provenance metadata about dataset characteristics, 
workflows, and experiments, which are critical to evaluating ML data processing and transformation history.

https://doi.org/10.7191/jeslib.685
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Table 2: ML FAIR Matrix. Properties are grouped by metadata type. Full compliance with at least one FAIR Principle is indicated 
by a solid circle. Partial compliance is indicated by a half-filled circle. The primary FAIR Principle associated with each property, as 
determined by authors, is indicated.

Generalist Repositories Specialist Repositories

Property Dryad
UC San 
Diego 

Library

Harvard 
Dataverse Figshare Zenodo UCI 

MLR
Open 

ML Kaggle
FAIR 

Guiding 
Principle

Curation Y Y Offered N N N N N

Descriptive Metadata

Title ● ● ● ● ● ● ● ● F2

Description ● ● ● ● ● ● ● ● F2

Language ● ● ● ● F2

Note ● ● ● ● ● F2

Domain ● ● ● ● I2

Keyword ◐ ◐ ● ◐ ● ◐ ◐ ◐ I2

Geographic keyword ◐ ◐ ◐ ◐ ◐ I2

Scientific keyword ◐ ◐ ◐ I2

Number of instances 
(rows) ● ● F2/R1

Number of attributes 
(columns) ● ● ● F2/R1

Missing attribute values ● ● ● R1

Class distribution ● ● ● R1

Recommended data split ● ● ● R1

Target feature ● R1

Sample size ● R1
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Table 2 Continued: ML FAIR Matrix. Properties are grouped by metadata type. Full compliance with at least one FAIR Principle is 
indicated by a solid circle. Partial compliance is indicated by a half-filled circle. The primary FAIR Principle associated with each 
property, as determined by authors, is indicated.

Generalist Repositories Specialist Repositories

Property Dryad
UC San 
Diego 

Library

Harvard 
Dataverse Figshare Zenodo UCI 

MLR
Open 

ML Kaggle
FAIR 

Guiding 
Principle

Provenance Metadata

Locally unique object 
identifier ● ● ● ● ● ● ● ● F2

Persistent identifier ● ● ● ● ● ● F1

Citation ● ● ● ● ● ● ● R1.2

Original data owner ● ● ● R1.2

Original data URL ● ● ● R1.2

Creator/ contributor ● ● ● ● ● ● ● ● R1.2

Creator/ contributor 
ORCID ● ◐ ● ● ● R1.2

Creation/ collection date ● ● ● R1.2

Publication date ● ● ● ● ● R1.2

Primary associated article 
citation ● ● ● ● I3

Primary manuscript DOI 
or URL ● ● ● ● ● ● ● I3

Related resource citation ● ● ● ● I3

Related resource identifier ● ● ● ● ● ● ● I3

Related resource relation 
type ● ● ● ● I3

Related resource type 
(dataset, publication, etc.) ● ● ● I3

Update ● ● ● ● ● ● ● R1.2

Version ● ◐ ● ● ● ● ● R1.2

Methods ● ● R1.2

Technical details (software, 
instrumentation, etc.) ● ● ● ● R1.2

Tasks ● ● R1

Preprocessing steps ● R1

Estimation procedure ● R1

Cost matrix ● R1

Evaluation measures ● ● R1
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Table 2 Continued: ML FAIR Matrix. Properties are grouped by metadata type. Full compliance with at least one FAIR Principle is 
indicated by a solid circle. Partial compliance is indicated by a half-filled circle. The primary FAIR Principle associated with each 
property, as determined by authors, is indicated.

Generalist Repositories Specialist Repositories

Property Dryad
UC San 
Diego 

Library

Harvard 
Dataverse Figshare Zenodo UCI 

MLR
Open 

ML Kaggle
FAIR 

Guiding 
Principle

Administrative (Rights and Preservation) Metadata

License ● ● ● ● ● ● ● ● R1.1

File format ● ● ● R1

Dataset size ● ● ● ● ● ● R1

Media type ● ● ● R1

Checksum ● ● ● ● ● R1.2

Funding

Grant title ◐ ● ● R1.2

Grant number ● ◐ ● ● ● R1.2

Funding Program ◐ ● ● R1.2

Funding Agency ● ● ● ● R1.2

Metrics

Usability rating ● R1

Views ● ● ● ● F2

Downloads ● ● ● ● ● F2

Citations ● F2
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Characteristics of ML objects in repositories

ML objects in repositories

Full metadata extracts, analysis code, and all supplemental tables are available at Labou et al. 2024. We 
retrieved a total of 38,707 objects matching our search terms from the eight repositories searched. Over 
32,000 objects, representing 83% of all returned results, were from Zenodo and Figshare, both repositories 
with a self-deposit process, no post-deposit curation, and accepting all content types. The majority of 
returned objects in both repositories were more in line with traditional scholarly outputs that report results, 
such as journal articles, conference papers, reports, and presentations. These research outputs are useful 
for information sharing about ML processes and developments, but they are not reusable ML output in the 
practical sense we mean here. Therefore, we limited further analyses to the subset of Figshare objects tagged 
as “dataset,” “software,” or “model,” and to the subset of Zenodo objects classified as “Dataset” or “Software.”3

After filtering the Figshare and Zenodo records as described, a total of 19,127 “machine learning” objects 
remained and were used for subsequent analysis. Summary statistics for the metadata extracts are reported 
in Table 3. The ascending rank order of repositories, from fewest to greatest number of retrieved objects, 
was: UC San Diego Library, Dryad, Harvard Dataverse, UCIMLR, Kaggle, Zenodo, OpenML, Figshare. A 
total of 6,050 objects were retrieved from the three ML-specific repositories.

Trends over time

ML objects have been appearing in these repositories (as determined by date associated with object) with 
greater frequency of deposits in the last 10 years (Figure 1, Supplemental Table C).4 Most repositories have 
seen consistently increasing numbers of deposits, especially pronounced in generalist repositories.

Common domains

Four of the repositories reported domains. The domains that were reported for 20% or more of the classified 
objects in any one of the reporting repositories were generally in the fields of biological sciences, computer/
information sciences, medicine, chemistry, and social sciences (Table 3).

Dataset size

The median total dataset size per object for the four generalist and one specialist (Kaggle) repositories for 
which size was included in metadata ranged from 0.07 MB to 797 MB (Table 3). The mean dataset size 
ranged from 455 MB to 10,658 MB. For Kaggle, the median and mean were 1.2 MB and 639 MB, respectively. 

3  For Figshare, 42% of the retrieved “machine learning” objects were designated by depositors as “datasets” (<0.01% 
as “software” or “model”). For Zenodo, <20% of “machine learning” objects retrieved were designated as “dataset” and 
11% were tagged as “software.” Objects in Zenodo labeled as audiovisual or image resource types were spot-checked 
for classifiability as ML output. Since the majority of objects not tagged as data or software in the repositories were not 
training data, these other resource types were excluded as a whole.

4  UCIMLR was first established in 1987 (UCIMLR, n.d.), with annual deposits in the 10s until about 2007, when a web 
site superseded the original ftp archive.
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Table 3: Object-level summary statistics for metadata retrievals from each repository. When more than five categories for a 
characteristic were present, only the top five are displayed.

Characteristic Dryad
UC San 
Diego 

Library

Harvard 
Dataverse Figshare Zenodo UCIMLR OpenML Kaggle

Number of objects 
returned

219 25 269 10,347 2,217 583 3,460 2,007

Licenses (% of 
objects) 

CC0 (100%)

CC BY 4.0 
(92%)

CC BY NC SA 
4.0 (4%)

MIT (4%)

CC0 (84%)

No waiver (7%)

CC BY 4.0 (77%)

CC BY + CC0 
(8.9%)

CC BY-NC 4.0 
(8.5%)

CC0 (2.4%)

MIT (1.4%)

CC-BY 4.0 
(48%)

‘other open’ 
(17%)

CC0 (11%)

MIT (5%)

ODbL (3%)

CC BY 4.0 
(99%)

Public/Public 
Domain/CC0 

(92%)

Free (1.5%)

Publicly 
available 

(1.2%)

Unknown 
(32%)

CC0 (21%)

Other (11%)

copyright-
authors (8%)

CC BY 4.0 (5%)

Number of files per 
object

Mean: 13

Median: 2

Max: 617

Mean: 6

Median: 5

Max: 33

Mean: 50

Median: 4

Max: 2496

Mean: 3

Median: 1

Max: 1,100

Mean: 9

Median: 1

Max: 2,600

Mean: 3

Median: 2

Max: 35

Mean: 1 *

Median: 1

Max: 1

NA

Object size (MB)
Mean: 6,277

Median: 21

Max: 240,411

Mean: 11,060

Median: 991

Max: 130,855

Mean: 7,443

Median: 119

Max: 661,976

Mean: 455

Median: 0.07

Max: 675,675

Mean: 5,219

Median: 32.7

Max: 300,398

NA NA

Mean: 639

Median: 1.2

Max: 73,678

Domain (% of 
objects)

Biological 
sciences (7.3%)

Computer and 
information 

sciences (3.7%)

Earth and 
related 

environmental 
sciences (1.4%)

Clinical 
medicine 

(1.4%)

Medical and 
health sciences 

(1.4%)

NA

Social Sciences 
(41%)

Computer and 
Information 

Science (36%)

Medicine, Health 
and Life Sciences 

(16%)

Earth and 
Environmental 
Sciences (11%)

Physics (6%)

Information 
Science (36%)

Medicine, Health 
and Life Sciences 

(16%)

Earth and 
Environmental 
Sciences (11%)

Physics (6%)

Biological 
Sciences not 

elsewhere 
classified (41%)

Information 
Systems not 
elsewhere 

classified (29%)

Genetics (21%)

Biotechnology 
(18%)

Cancer (18%)

NA

Computer 
(36%)

Life (22%)

Other (13%)

Physical 
(10%)

Business 
(7%)

NA NA

Number (%) of 
objects with >0 
related resources

162 (74%) 24 (96%) 67 (25%) 8,906 (86%) 2,077 (94%) 102 (17%) 1,661 (48%) NA

Of objects with >0 
related resources, 
number of related 
resources per object

Mean: 1.2

Median: 1

Mean: 4.8

Median: 4

Mean: 1.3

Median: 1

Mean: 1.0

Median: 1

Mean: 1.7

Median: 1

Mean: 3.6

Median: 5

Mean: 1.1

Median: 1
NA

* OpenML allows for exactly one file per object
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File count

Excluding OpenML, which permits exactly one file for every object, and Kaggle, whose metadata did not 
include file count, the median number of files per object ranged from 1 to 5, while the mean ranged from 3 
to 50 (Table 3).

File type 

Metadata retrievals from seven of the eight repositories yielded information about file extension (Figure 
2, Appendix), with OpenML enforcing ARFF format for all objects. Basic tabular data (CSV, Excel, etc.) 
was the most common format, with 34% of objects in these repositories including files in this format 
category. Compressed formats and text formats were each present in files associated with ~20% of objects. 
Compression of files before upload is a common practice likely due to both usability and transfer efficiency 
considerations, as well as being a way to maintain original file organization; thus, the prevalence of other file 
formats such as tabular, textual, code, and image are likely strongly underrepresented.

Figure 1: Upward trend over time of new “machine learning” objects published in generalist and specialist 
repositories, 2000-2021.
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Identifiers

All of the generalist repositories assign PIDs, specifically DOIs, to datasets. Of the specialist repositories, 
Kaggle and OpenML do not assign PIDs, and while UCIMLR has a field for DOI, it was largely unpopulated 
at the time of metadata extract. As evidence of how the absence of a PID plays out in practice, we identified 
several objects in Kaggle named variously “Thoracic Surgery,” “Thoracic-Surgery,” or “Thoracic Surgery 
Dataset’’ that replicate the UCIMLR Thoracic Surgery Data dataset (Lubicz et al. 2013). We reviewed five 
of these datasets—none of which have associated PIDs—and found that they have little or no additional 
documentation that might disambiguate them from one another or from the original dataset.

Citations

Formatted citations are displayed on the landing pages of all objects for all of the generalist repositories, 
although the citations themselves were not available via API for Dryad and Zenodo. Of the specialist 
repositories, only Kaggle lacks a citation field entirely. For OpenML and UCIMLR, only 16% and 1% of 
objects, respectively, have a populated citation, but for UCIMLR this looks to be an artifact of scraping the 
developing beta site. As of early 2023, the site reflects far more objects with citations; as such, we do not draw 
definitive conclusions for this repository in terms of citations.

Figure 2: Percentage of objects containing file format category in repositories. Note that this excludes OpenML, 
which enforces ARFF format for all objects, and Kaggle, for which file format could not be determined based on 
extracted metadata. A full list of file extensions mapped to format category is available in Supplemental Table 
D. Counts and proportions used to create Figure 2 are in Supplemental Table E. Because objects can contain one 

or more associated files, the total for each repository may be greater than 100%. 
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We also examined the metadata, specifically citations, associated with several datasets that have been re-
published in multiple repositories. For example, the “Iris’’ dataset in Kaggle (Fisher 1988) states in the 
“About Dataset’’ section that the dataset is also available in UCIMLR but only if the end-user scrolls down to 
the “Metadata” section of the page and clicks on “Collaborators’’ will they see the attribution “UCI Machine 
Learning (Owner).” In this case, as in many others, the elements needed to form a proper citation (author, 
publication date, original title, and publisher) are either not conveniently located so as to promote citability, 
or are entirely absent, as in the case of the original data publication date. The same dataset, entitled “iris” in 
OpenML, is attributed in the free text of the “Description” field: “Source: UCI - 1936 - Donated by Michael 
Marshall.” According to the UCIMLR Iris object landing page, Michael Marshall is indeed the dataset donor, 
however, the end-user will need to read the narrative associated with the “Iris Plants Database’’ to find a 
reference to the original research paper from which this data is sourced.

Data reuse permissions

Licenses associated with ML objects varied between repositories (Table 3, Supplemental Table F). All the 
repositories support data usage licenses, although Creative Commons licenses or waivers are specified 
for the vast majority of objects in the Dryad, Harvard Dataverse, UCIMLR, and UC San Diego Library 
repositories, while objects in the other two specialist repositories have a wider range of licenses. Part of this 
difference is due to the tendency of many generalist repositories to offer only a limited number of permissible 
license types from which depositors can select. Zenodo and Figshare also offer a range of licenses, although 
depositors waived rights (e.g., CC0) or assigned attribution-based licenses (e.g., CC BY, MIT, BSD) in 
83% and 86% of objects, respectively. Conversely, specialist repositories (except for UCIMLR) more often 
allow a wider range of licenses, including “other.” In OpenML, the free text permitted in the license field 
made categories harder to define; nevertheless, 93% of objects were released to the public domain, 1% were 
assigned attribution-based licenses, and the remainder were not clearly classifiable licenses. For Kaggle, 
about half of objects did not have clear licenses; of those that were classifiable, 30% were CC0 or attribution-
based, and 12% were more restrictive.

Related resources 

Seven of the repositories contained enough Related Resource information to report the percentage of objects 
with links. The percentage of objects with links varied from 17% to 96% (Table 3). The median number of 
links per object with at least one link varied from 1 to 5.

Discussion

We identify the following as common themes across repositories and areas where further work is needed to 
enable findability, interoperability, and reuse of ML objects: persistent identifiers, unambiguous citations, 
rich technical provenance metadata, appropriate use of related resources, explicit licenses, and clear file 
labels.
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Value of persistent identifiers

All repositories assessed here have what we consider minimally required metadata fields: locally unique 
object identifier, title, description, keyword, creator, and license. Although most of the repositories support 
a field for PID, neither Kaggle nor OpenML do so. This is perhaps not entirely inappropriate, considering 
the common purpose of these repositories: exploratory research, skill building, and collaboration, versus the 
more formal publication nature of the other repositories. However, in the context of the reuse/republishing 
of datasets (especially UCIMLR-derived ones) across repositories, the provenance would be more likely 
to endure if all of their datasets were assigned a PID. More strongly, making the source data citation field 
mandatory and integrating citation copying with dataset download, to encourage users to reference the 
citation when reusing the data, will ensure that a direct line can be drawn between the original data and its 
later instantiations.

Similar to datasets, we note that ML experiments as discrete entities could also include PIDs. For instance, 
in OpenML, the repository with the most comprehensive ML architecture, projects - when documented 
completely - include links to data and algorithms used and values for parameters as well as model 
evaluation measures. Should finer-scale identification be desired, popular algorithm packages themselves 
could be assigned PIDs. Algorithms are the engine of ML, driving the classification, clustering, regression, 
anomaly detection, or other task type, and are prime candidates for discovery and reuse. They may come 
from software packages that have an associated published paper with a PID, as is the case with some (but 
not all) commonly used Python libraries, or they may be pulled from websites like SourceForge, an open 
source software platform that publishes the Weka collection of algorithms developed for data mining tasks. 
The practice of algorithm- or package-specific PIDs would increase transparency of ML methodology and 
implementation, acknowledging that this would be dependent on software platforms issuing PIDs.

Importance of unambiguous citations

Similar to PIDs, citations are a valuable element of reuse because they facilitate proper and accurate 
attribution of data. It is perhaps as a consequence of a) a data depositor habit of republishing datasets, 
especially those first published in UCIMLR and b) across the repositories there is only limited support for 
documenting original data owner and/or linking to the original data source, that accurate attributions may 
be problematic. In addition, when left to their own discretion, data submitters may not provide enough 
information to form an accurate citation. It is not clear at this point how common it is for people to publish 
datasets in more than one repository, except to note that it is not rare. While one reason may be that users 
wish to avail themselves of the repository-specific tools, it ultimately results in murky data provenance. 
A simple solution to these citability issues is for repositories to collect via mandatory fields the various 
elements needed to construct a proper citation.

Describe ML components with rich metadata

Beyond the minimally required metadata discussed above, all repositories would benefit from expanding 
traditional concepts of descriptive, provenance, and technical metadata to document ML experiments to 
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better enable reuse. Accordingly, expanded descriptive metadata would include fields such as resource type 
(e.g., date, image, text), number of instances, number of attributes, class, class distribution, recommended 
data split, target feature, sample size, task type (e.g., classification or clustering), and dataset type (e.g., 
training or testing). 

To tell the full story of a ML experiment, include fields for reporting what purpose the data were created or 
collected and known limitations of the data (such as OpenML and UCIMLR’s missing values properties). 
Equally important are provenance metadata about the ML workflows. When thoughtfully written, a methods 
field informs the ability of a user to determine if the data is actually useful in a particular context (Wilkinson 
et al. 2016). Examples of methods-related metadata include: data generation and collection processes, any 
data processing (e.g., cleaning or wrangling), ML model training parameters and hyperparameters, and any 
other process-related documentation. 

Technical metadata for ML includes any software or instrumentation used to create, collect, or process data, 
including software version and instrumentation make and model. It is not uncommon to see methods, 
technical details, and a data creation or collection date buried in description fields, configuration files (e.g., 
config or yaml environment files), or code notebooks when designated fields for this type of information are 
not provided during data deposit. Ultimately, having both methods and technical details fields provides the 
fullest context, especially in cases where reuse is anticipated.

In instances where adding database fields is not feasible, “readme” files, a staple of data curation that offers a 
simple means of keeping data documentation and data together, can fill this gap. UCIMLR exemplifies this 
practice in the context of ML by creating a downloadable “readme”-style .names file containing a structured 
summary of dataset metadata. This practice can easily be extended to ML datasets by creating a README 
that includes traditional metadata as well as the expanded descriptive, provenance, and technical metadata 
outlined above. ML practitioners may already be doing this, but as curators we can be prescriptive about 
what specifically should go into a README by creating a template for researchers that includes these fields.

Exposing related resources for findability and reusability

A set of fields consisting of related work citation, PID or URL, and relation type can help clarify the 
provenance of datasets like “Iris” and “Thoracic Surgery.” Such fields can contextualize a dataset in relation 
to, for instance, source data, other versions of the dataset, reference materials, or primary associated 
articles (DataCite, Wood-Charlson et al. 2022). While any linking of related works is better than none, the 
infrastructure for establishing the interconnections between datasets and other works is available through 
the application of the community standard DataCite Metadata Schema, relationType property. Stored in a 
designated field, this property allows repositories to characterize the relationship between the ML object 
being deposited and other resources, internal or external to the repository. The DataCite relationType field 
is currently used by UC San Diego Library, Dryad, and Zenodo, which further push metadata to DataCite 
to maximize data visibility and reuse.
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Need for clear licensing

Non-specific license statements can cause potential problems, because when exceptions to a controlled value 
list are allowed, licenses may be unclear in practice. For instance, among the license types offered when 
creating a new dataset record in Kaggle is “Other (specified in description),” but a review of the description 
field of the set of records that use this license type shows that only a small subset of records actually note a 
specific license. While allowing flexibility in license type is potentially useful, providing a controlled list of 
licenses in a mandatory field forces data providers to define “clear and accessible” guidance about data usage 
to future users of their work (Wilkinson et al. 2016). This is especially crucial since without a clear license 
allowing reuse of some kind, all other metadata provided is moot in the context of reusability.

Compressed files and the need for labels

Although compressing directories can obscure their contents and increase risk to long-term preservation, 
this practice is done to accommodate the need to preserve large file directory structures and deliver data to 
the end user efficiently. This is a common tradeoff for many generalist repositories. Given the complexity of 
ML outputs, the best way forward for generalist repositories may be to promote the practice of labeling ML 
components explicitly, with controlled vocabulary, and indicating the locations of those components, within 
specific folders or file names. Better yet, the file names and labels should be incorporated into pipelines that 
instruct users on the proper order of operations for reproducing a ML workflow (e.g., the “silver” standard 
described by Heil et al. 2021). If labels and workflows are provided with sufficient detail, then the particular 
bundling method of shared ML research will be less important, or will at least be a smaller barrier to reuse. 

Access at scale

We consider the presence of a publicly accessible API to access (meta)data at scale an important aspect 
of reusability in the context of ML. As noted in Table 1, all repositories included in this analysis except 
UCIMLR and UC San Diego Library had a usable public-facing API. Even for repositories with an API, 
web scraping was sometimes necessary to return certain metadata fields of interest (see Appendix for more 
details). As researchers become more interested in “big data’’ and accessing bulk data, a public-facing API is 
becoming, if not an expectation, at least a benefit and enticement for researchers to use certain repositories 
over others.

Conclusion 

Overall, we find there is a documentation gap between the two categories of repositories: generalist 
repositories focus on collecting traditional provenance metadata while specialist repositories emphasize 
metadata about dataset characteristics, workflows, and experiments. The gaps in metadata collection 
can be addressed in many cases by each adopting some of the impactful metadata practices for dataset 
discoverability of the other. 
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In particular, all repositories can ensure that their schema supports related resources, as these are 
crucial for explicitly linking ML objects to their source materials, supplemental documentation, and 
related publications across various platforms. Repositories should also facilitate submission of rich 
metadata and PIDs associated with these resources, when available. Specialist repositories can invest in 
assigning PIDs to objects and ensuring the consistent collection of rich provenance metadata through 
use of designated, mandatory fields. Generalist repositories can add support for ML-specific fields for 
characterizing ML datasets and processing steps, such as number of instances and number of attributes. 
Alternatively, repositories can leverage standardized README files with support for ML fields, including 
implementation environment details, as a means of enhancing reusability without major changes to 
repository infrastructure. While there are trade-offs in investing time and effort for repositories to collect 
additional metadata, capturing this information in some form is imperative for long-term findability and 
reusability of ML research outputs.

Data Availability
Data, analysis code, and all supplemental tables are available in UC San Diego Library Digital Collections: 
https://doi.org/10.6075/J0JS9QMH.

Metadata retrieval and characteristics of ML objects are available under the article Supplementary Files:

Appendix: Metadata retrieval & Characteristics of ML objects
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