
11/9/2018 Lab04 - Data Types and QC

file:///C:/Users/ppascuzz/Documents/collaborations/sappnelson_m/Lab04_DataTypes/Lab04_DataTypes.html 1/11

Lab04 - Data Types and QC
Instructor
September 13, 2018

Learning Objectives
Preparation
Data Types
Excel for Data Collection

Demonstration of Inadvertant Conversion of Data in Excel
Exercise - Excel Data Import
Exercise - Data Validation

Importing Data into R
Lab Exercise01
Session Information

Learning Objectives
1. Identify the basic data types.
2. Import and export text files with Excel
3. QC data with data validation in Excel
4. Read text files into R as a tibble
5. Identify and convert suitable variables to a factor

Preparation
1. Copy the folder Lab04_DataTypes from the R drive of the lab computer to your Research course home directory

AND to the desktop of the lab computer.
2. Open the html version and Rmd version of Lab04.

Data Types
When you import data from text files into Excel, there are only three possible data types: General, Text and Date. This is
a real flaw of Excel. Users often rely on the General data type to import their data. This can lead to the corruption of the
data. Two notorious examples are the inadvertant conversion of text values to dates and the loss of leading zero to
numerical ID numbers. In addition, the General import allows each cell in a column to have a different data type!

With R, there are more data types, and the import process can be very controlled. The most common R data types are
character (text), numeric, integer, logical, factor, NA (Not Available), and date-time. Importantly, these data types
refer to how the data is stored in R and do not necessarily align with the data types discussed in lecture such as
experiment or observational.

There are a large number of functions that allow you to read text files into R. In this class, we are going to use packages
and functions from tidyverse (http://r4ds.had.co.nz/). The advantages of using tidyverse is that the functions have a
more uniform syntax, many common tasks have been simplified, and the packages are well-integrated with RStudio.

Excel for Data Collection
Excel is still a useful tool for certain tasks. Used with proper planning, it is useful for data collection or sharing. To plan
properly, it help to understand what Excel can do to your data.

Data Management Course with Data Science Tools
Supplemental File 1

JeSLIB 2018; 7(3): e1152
doi:10.7191/jeslib.2018.1152

http://r4ds.had.co.nz/

11/9/2018 Lab04 - Data Types and QC

file:///C:/Users/ppascuzz/Documents/collaborations/sappnelson_m/Lab04_DataTypes/Lab04_DataTypes.html 2/11

Demonstration of Inadvertant Conversion of Data in Excel
1. Open Example-01-General.xlsx and examine the data.

2. Open Example-01-Supervised.xlsx and compare with the first file.

What happened? Column A should contain variations of a numeric identifier, but Excel but with the General import
method, Excel has converted some to dates and some to numbers. In the second file, all are stored as text. Column B
stores dates which have been imported faithfully, although one value has a data entry error that caused problems.
Column C should contain nominal variables, but the General import method has converte several to dates. Column D
contains numeric identifiers with important leading zeroes. The General import method has eliminated these. Column E
contains integer values that were imported correctly both times.

3. Follow along as I import Example-01-Raw.txt with the Excel text import wizard.

Instructor does a live demonstration for Excel Text Import Wizard. Important point is to avoid General import as much as
possible to minimize data corruption.

4. Import Example-01-Raw.txt in R. Do not worry about understanding the computer code now. You will have time
later.

suppressMessages(library(tidyverse))

Warning: package 'tidyverse' was built under R version 3.4.4

Warning: package 'tidyr' was built under R version 3.4.4

Warning: package 'dplyr' was built under R version 3.4.4

Warning: package 'stringr' was built under R version 3.4.4

example01 <- read_delim("Example-01-Raw.txt", delim="\t")

Data Management Course with Data Science Tools
Supplemental File 1

JeSLIB 2018; 7(3): e1152
doi:10.7191/jeslib.2018.1152

11/9/2018 Lab04 - Data Types and QC

file:///C:/Users/ppascuzz/Documents/collaborations/sappnelson_m/Lab04_DataTypes/Lab04_DataTypes.html 3/11

Parsed with column specification:
cols(
id1 = col_character(),
date = col_date(format = ""),
text = col_character(),
id = col_character(),
number = col_integer()
)

Warning in rbind(names(probs), probs_f): number of columns of result is not
a multiple of vector length (arg 2)

Warning: 1 parsing failure.
row # A tibble: 1 x 5 col row col expected actual file expected <int
> <chr> <chr> <chr> <chr> actual 1 4 date valid date 2010/13/10 'Exampl
e-01-Raw.txt' file # A tibble: 1 x 5

Note the information provided by R. It tells you how each column of data was imported. Unlike Excel, R requires that
values in the same column must have the same data type. There is also a warning about an invalid entry.

We can display the data.

example01

A tibble: 5 x 5
id1 date text id number
<chr> <date> <chr> <chr> <int>
1 10.10.2010 2010-10-10 oct10 0010 10
2 10-10-2010 2010-11-10 nov10 0100 100
3 10_10_2010 2010-12-10 dec10 1000 1000
4 10102010 NA roc10 1001 1001
5 10112010 2011-01-10 jan11 1010 NA

R did a better job importing this data without intervention. Importantly, note the <NA> value. This is an invaluable data
type in R. In this case, one value in the data column has a data entry error. We could go back to the text file to try to
correct the issue. Compare this to the NA value for the missing number. This simply indicates that we have missing data.

We can get a quick summary of the data that was imported.

summary(example01)

Data Management Course with Data Science Tools
Supplemental File 1

JeSLIB 2018; 7(3): e1152
doi:10.7191/jeslib.2018.1152

11/9/2018 Lab04 - Data Types and QC

file:///C:/Users/ppascuzz/Documents/collaborations/sappnelson_m/Lab04_DataTypes/Lab04_DataTypes.html 4/11

id1 date text
Length:5 Min. :2010-10-10 Length:5
Class :character 1st Qu.:2010-11-02 Class :character
Mode :character Median :2010-11-25 Mode :character
Mean :2010-11-25
3rd Qu.:2010-12-17
Max. :2011-01-10
NA's :1
id number
Length:5 Min. : 10.0
Class :character 1st Qu.: 77.5
Mode :character Median : 550.0
Mean : 527.8
3rd Qu.:1000.2
Max. :1001.0
NA's :1

This is descriptive information about the values in each column. Again, NA values are noted.

Exercise - Excel Data Import
1. Locate the files exampleGradeBookCSV.csv and exampleGradeBookTAB.txt .
2. Double-click on the exampleGradeBookCSV.csv file. Excel should start and open the file.
3. Look in the first column of the file labeled “student”. Confirm that this is comprised of three letters and a number.
4. Examine rows 33 and 43. What happened here? The original data was JUN2 and MAR1.
5. Excel is notorious for changing certain numbers and text to dates using its General import method.
6. We can try to fix this problem. Highlight cell A33. Go to the Cells section of the Menu. Select Format > Format

Cells > Text. Did it fix the problem?
7. We are done with this file. Close Excel and do not save the file.
8. Locate the file exampleGradeBookTAB. Double-click on it. It should open with NotePad or WordPad. It should not

open with Excel. However, Excel can open this type of file. Close NotePad/WordPad.
9. Locate Excel on your lab computer, and open it. In the bottom left of the window is should have an option to “Open

Other Workbooks”. Click on this and Browse to the folder for the workshop. Only Excel files should appear in the
Window.

10. At the bottom right of this window is a drop down that displays “All Excel Files”. Change this to “All Files”. You
should now see all files in the folder.

11. Select exampleGradeBookTAB. The Text Import Wizard should open.
12. In Step 1, confirm that file type is set to “Delimited”, and check the “My data has headers” box. Hit “Next”. Note the

lines with the hash signs. This contains metadata about this data set. It is always a good idea to include metadata
at the beginning of a file, marking it with a specific character or flag.

13. In Step 2, confirm that the “Delimiter” is set to Tab and the “Text qualifier” is set to none. If you want, you can
change these settings to see how it alters the “Data preview”. Make sure that you select the appropriate settings
before hitting “Next”.

14. In Step 3, change the “Column data format” to Text for the columns labelled “student”, “class” and “letter.grade”.
15. Examine rows 33 and 43. The student identifiers should now be correct because we did not allow Excel to guess

at the data in this column.

Exercise - Data Validation
1. The “class” column appeared to have some typos. These would be pretty easy to find and fix manually with this

small file, but there is a better way.
2. Make a new worksheet called validation. In cells A1 through A5, enter class, Freshman, Sophomore, Junior,

Senior. We are going to use this small list for Data Validation.

Data Management Course with Data Science Tools
Supplemental File 1

JeSLIB 2018; 7(3): e1152
doi:10.7191/jeslib.2018.1152

11/9/2018 Lab04 - Data Types and QC

file:///C:/Users/ppascuzz/Documents/collaborations/sappnelson_m/Lab04_DataTypes/Lab04_DataTypes.html 5/11

3. Highlight the data in the class column by selecting cell B2. Hold down Control and Shift and hit the Down Arrow.
All data in column B should now be highlighted.

4. In the Data tab, find the Data Validation icon. It may or may not be labelled depending on the size of your window.
The icon appears as two small rectangles, one with a check and one with a red circle/slash. Click on the icon and
select “Data Validation”.

5. In the “Allow” window, select List.
6. In the “Source” box, click on the small spreadsheet icon at the right. Select cells A2 through A5 in the validation

worksheet and click on the spreadsheet icon again.
7. Click on “OK” in the Data Validation window. Nothing seems to change in the “class” column.
8. Make sure that all data in the “class” column is still highlighted. Go to Data Validation again and select “Circle

invalid data”.
9. Scroll down, and you should see the invalid entries in the “class” column. You can fix these by selecting the bad

cells and choosing the valid values from the drop down.

Data validation is an excellent way to check an existing data set, but you can also use it to control data entry as well.
Examine the possiblities in the Data Validation window. What strategies could you use on the other columns? Imagine
that you had six undergraduates helping you collect data for an important experiment. How could you use Excel Data
Validation to control the possible chaos?

Importing Data into R
Data collection or entry is not a strength of R. There are packages for this, but they tend to be cumbersome. Most
analyses with R start with a text files containing data that is imported into R. In addition, there are packages that allow
you to read in other formats such as Excel, SAS and SPSS.
Today, we are going to read in our data as a tibble, a new class of R object related to a data frame. You can think of
these as the equivalent of an Excel worksheet but with important differences. In a tibble or data frame, rows are records
and columns are variables. Unlike Excel, the values in a column MUST be the same data type. In addition, there must be
a valid value for every variable. If no valid variable is found, R will introduce an NA.

Data validation in R is more flexible and more complex that data validation in Excel. Today, we will use

grades <- read_delim("exampleGradeBookTAB.txt", delim="\t", comment="#")

Parsed with column specification:
cols(
student = col_character(),
class = col_character(),
test1 = col_integer(),
test2 = col_integer(),
test3 = col_integer(),
attend = col_integer(),
attend.perc = col_integer(),
final.score = col_double(),
adj.final.score = col_double(),
letter.grade = col_character()
)

The data appears to have been read in with no problems.

grades

Data Management Course with Data Science Tools
Supplemental File 1

JeSLIB 2018; 7(3): e1152
doi:10.7191/jeslib.2018.1152

11/9/2018 Lab04 - Data Types and QC

file:///C:/Users/ppascuzz/Documents/collaborations/sappnelson_m/Lab04_DataTypes/Lab04_DataTypes.html 6/11

A tibble: 100 x 10
student class test1 test2 test3 attend attend.perc final.score
<chr> <chr> <int> <int> <int> <int> <int> <dbl>
1 BAD30 Sophomore 48 65 81 40 89 73.9
2 BAG69 Junior 70 42 74 42 93 67.9
3 BAP77 Senior 76 58 71 42 93 71.1
4 BIC74 Junior 75 85 72 42 93 78.2
5 BIG44 Sophomore 55 76 79 40 89 76.5
6 BIW87 Senior 81 80 68 43 96 76.1
7 BIX12 Freshman 35 48 89 39 87 71.8
8 BOJ29 Sophomore 46 90 81 40 89 79.9
9 BON82 Senior 79 72 70 43 96 74.9
10 BOP78 Senior 77 43 71 42 93 67.5
... with 90 more rows, and 2 more variables: adj.final.score <dbl>,
letter.grade <chr>

A summary of the data could reveal problems.

summary(grades)

student class test1 test2
Length:100 Length:100 Min. : 4.00 Min. : 23.00
Class :character Class :character 1st Qu.: 45.00 1st Qu.: 56.75
Mode :character Mode :character Median : 56.00 Median : 71.00
Mean : 58.96 Mean : 68.95
3rd Qu.: 75.25 3rd Qu.: 84.00
Max. :103.00 Max. :120.00
test3 attend attend.perc final.score
Min. : 53.00 Min. :33.00 Min. : 73.00 Min. :61.62
1st Qu.: 71.75 1st Qu.:39.00 1st Qu.: 87.00 1st Qu.:71.75
Median : 78.00 Median :41.00 Median : 91.00 Median :74.88
Mean : 77.65 Mean :40.58 Mean : 90.25 Mean :74.71
3rd Qu.: 82.25 3rd Qu.:42.00 3rd Qu.: 93.00 3rd Qu.:78.25
Max. :105.00 Max. :45.00 Max. :100.00 Max. :87.62
adj.final.score letter.grade
Min. :69.62 Length:100
1st Qu.:79.75 Class :character
Median :82.88 Mode :character
Mean :82.71
3rd Qu.:86.25
Max. :95.62

Three of our columns imported as characters and seven as numeric. There is some reason for concern about the test
scores. Should students be able to get greater than 100? In this case, yes because this is simulated data, and I did not
allow

One problem with the data as it stands is that we know that class and grade are categorical variables because there are
only a limited number of valid values. In Excel, we made a ‘list’ of valid values for class. We can do something similar
here. Note that R is case sensitive!

count(grades, class)

Data Management Course with Data Science Tools
Supplemental File 1

JeSLIB 2018; 7(3): e1152
doi:10.7191/jeslib.2018.1152

11/9/2018 Lab04 - Data Types and QC

file:///C:/Users/ppascuzz/Documents/collaborations/sappnelson_m/Lab04_DataTypes/Lab04_DataTypes.html 7/11

A tibble: 7 x 2
class n
<chr> <int>
1 Freshman 13
2 Jnior 1
3 Junior 29
4 Senior 22
5 Senor 2
6 Sophomor 1
7 Sophomore 32

We can definitely see that there are typos in class.

count(grades, letter.grade)

A tibble: 9 x 2
letter.grade n
<chr> <int>
1 A 4
2 A- 5
3 B 45
4 B- 17
5 B+ 2
6 C 13
7 C- 3
8 C+ 10
9 D+ 1

This column appears to be OK.

class_values <- c("Freshman", "Sophomore", "Junior", "Senior")
class_values

[1] "Freshman" "Sophomore" "Junior" "Senior"

We can now check the class column for valid entries. We are going to use a matching operator, %in% to do this. The
result will be a logical vector, TRUE or FALSE. If the value of class in grades is a valid value, then TRUE will be
returned, otherwise FALSE .

class_valid <- grades$class %in% class_values
class_valid

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[12] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[23] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[34] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[45] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[56] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[67] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[78] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[89] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[100] TRUE

Data Management Course with Data Science Tools
Supplemental File 1

JeSLIB 2018; 7(3): e1152
doi:10.7191/jeslib.2018.1152

11/9/2018 Lab04 - Data Types and QC

file:///C:/Users/ppascuzz/Documents/collaborations/sappnelson_m/Lab04_DataTypes/Lab04_DataTypes.html 8/11

We can use this logical vector to examine the invalid entries. To do this, we need to look at entries that are FALSE. We
need to use the not operator, ! to do this.

!class_valid

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[56] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[67] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[78] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[100] FALSE

Note how this simply reveresed the logical values. We can now display the rows in grades with invalid class values.

filter(grades, !class_valid)

Warning: package 'bindrcpp' was built under R version 3.4.4

A tibble: 4 x 10
student class test1 test2 test3 attend attend.perc final.score
<chr> <chr> <int> <int> <int> <int> <int> <dbl>
1 RAS51 Jnior 56 89 78 41 91 79.6
2 SOQ91 Senor 84 29 66 43 96 62.8
3 XAH83 Senor 79 48 69 43 96 68.4
4 ZIK34 Sophomor 50 84 81 40 89 78.9
... with 2 more variables: adj.final.score <dbl>, letter.grade <chr>

How do you fix these values? There is a way to edit this data graphically, but that manual manipulation of the data would
not be documented. Better to actually code this. To do this, we can use mutate and replace to alter the values in the
tibble.

grades <- mutate(grades, class=replace(class, student == "RAS51", "Junior"))
grades <- mutate(grades, class=replace(class, student == "SOQ91", "Senior"))
grades <- mutate(grades, class=replace(class, student == "XAH83", "Senior"))
grades <- mutate(grades, class=replace(class, student == "ZIK34", "Sophomore"))
filter(grades, !class_valid)

A tibble: 4 x 10
student class test1 test2 test3 attend attend.perc final.score
<chr> <chr> <int> <int> <int> <int> <int> <dbl>
1 RAS51 Junior 56 89 78 41 91 79.6
2 SOQ91 Senior 84 29 66 43 96 62.8
3 XAH83 Senior 79 48 69 43 96 68.4
4 ZIK34 Sophomore 50 84 81 40 89 78.9
... with 2 more variables: adj.final.score <dbl>, letter.grade <chr>

Data Management Course with Data Science Tools
Supplemental File 1

JeSLIB 2018; 7(3): e1152
doi:10.7191/jeslib.2018.1152

11/9/2018 Lab04 - Data Types and QC

file:///C:/Users/ppascuzz/Documents/collaborations/sappnelson_m/Lab04_DataTypes/Lab04_DataTypes.html 9/11

This method would be inconvenient if you had a big data set with many problems, but so would manual editing. However,
this way, we have clear documentation of what was done. In addition, with more programming experience, you can
develop efficient R code to handle bigger problems.

We can convert both class and letter.grade to the R data type factors. Similar to Excel Data Validation, only specific
values will be allowed for these variables. In addition, if the factor is an ordinal variable, we can specifiy the order.

grades <- mutate(grades, class=parse_factor(class, levels=class_values))
grades %>% count(class)

A tibble: 4 x 2
class n
<fct> <int>
1 Freshman 13
2 Sophomore 33
3 Junior 30
4 Senior 24

Note, that class is shown in the table by the order that we specified, not in alphabetical order (which is the default).

valid_grades <- c("A+", "A", "A-", "B+", "B", "B-", "C+", "C", "C-","D+", "D", "F")
grades <- mutate(grades, letter.grade=parse_factor(letter.grade, levels=valid_grades))
grades %>% count(letter.grade)

A tibble: 9 x 2
letter.grade n
<fct> <int>
1 A 4
2 A- 5
3 B+ 2
4 B 45
5 B- 17
6 C+ 10
7 C 13
8 C- 3
9 D+ 1

The advantage of controlling the order for the factors in also apparent in the following plot.

grades %>%
 group_by(class) %>%
 summarise(`Test 1 Mean`=mean(test1, na.rm=TRUE)) %>%
 ggplot() +
 aes(x=class, y=`Test 1 Mean`) +
 geom_col()

Data Management Course with Data Science Tools
Supplemental File 1

JeSLIB 2018; 7(3): e1152
doi:10.7191/jeslib.2018.1152

11/9/2018 Lab04 - Data Types and QC

file:///C:/Users/ppascuzz/Documents/collaborations/sappnelson_m/Lab04_DataTypes/Lab04_DataTypes.html 10/11

We should save the edited version of our the grade book. Note, that the order for the factors can not be saved in the
text file. However, we have saved the process in this file!

write_delim(grades, path="exampleGradeBookTAB_corrected.txt", delim="\t")

Lab Exercise01
You will need the files “flights_ex.txt” and the datasets that we transferred during Lab 02.

Do the following:

1. Read in “flights_ex.txt” as a tibble
2. Determine which columns are suitable factors. Hint, use the count() function.
3. How can you get the valid values for these columns?
4. Check these columns for valid values.
5. Fix any bad entries. Assume that simple typos were made and make your best guess.
6. Convert these columns to factors.
7. Save the edited version to a file.

Write your code in an Rmd file with suitable comments. You should work in groups of 2 or 3, but each of you must turn in
your own Rmd file. The code can be indentical, but the comments and narrative should be your own.

Due Date: Start of lab on Sept. 21. Place your Rmd file in your project, clearly labeled. This exercise is not a requirement
of your Data Management Notebook. However, we do expect that some of the information from today will be
incorporated into the notebook.

Session Information

Data Management Course with Data Science Tools
Supplemental File 1

JeSLIB 2018; 7(3): e1152
doi:10.7191/jeslib.2018.1152

11/9/2018 Lab04 - Data Types and QC

file:///C:/Users/ppascuzz/Documents/collaborations/sappnelson_m/Lab04_DataTypes/Lab04_DataTypes.html 11/11

sessionInfo()

R version 3.4.3 (2017-11-30)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 15063)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] bindrcpp_0.2.2 forcats_0.3.0 stringr_1.3.1 dplyr_0.7.5
[5] purrr_0.2.4 readr_1.1.1 tidyr_0.8.1 tibble_1.4.2
[9] ggplot2_2.2.1 tidyverse_1.2.1

loaded via a namespace (and not attached):
[1] Rcpp_0.12.17 cellranger_1.1.0 pillar_1.2.3 compiler_3.4.3
[5] plyr_1.8.4 bindr_0.1.1 tools_3.4.3 digest_0.6.15
[9] lubridate_1.7.4 jsonlite_1.5 evaluate_0.10.1 nlme_3.1-131.1
[13] gtable_0.2.0 lattice_0.20-35 pkgconfig_2.0.1 rlang_0.2.0
[17] psych_1.8.4 cli_1.0.0 rstudioapi_0.7 yaml_2.1.19
[21] parallel_3.4.3 haven_1.1.1 xml2_1.2.0 httr_1.3.1
[25] knitr_1.20 hms_0.4.2 rprojroot_1.3-2 grid_3.4.3
[29] tidyselect_0.2.4 glue_1.2.0 R6_2.2.2 readxl_1.1.0
[33] foreign_0.8-70 rmarkdown_1.9 modelr_0.1.2 reshape2_1.4.3
[37] magrittr_1.5 backports_1.1.2 scales_0.5.0 htmltools_0.3.6
[41] rvest_0.3.2 assertthat_0.2.0 mnormt_1.5-5 colorspace_1.3-2
[45] labeling_0.3 utf8_1.1.4 stringi_1.1.7 lazyeval_0.2.1
[49] munsell_0.4.3 broom_0.4.4 crayon_1.3.4

Data Management Course with Data Science Tools
Supplemental File 1

JeSLIB 2018; 7(3): e1152
doi:10.7191/jeslib.2018.1152

