
Introduction

The world is in the midst of a technological revolution. Artificial intelligence (AI) is 
transforming our lives at an unprecedented pace. Even though AI is now infiltrating 
every sector of the global economy, its impact is arguably most pronounced in 
healthcare. In particular, the medical imaging segment has attracted considerable 
interest from AI developers and industry leaders in recent years. This phenomenon is 
reflected in the remarkable growth over the past few years of AI-related publications, 
applications to regulatory bodies for approval of diagnostic AI tools, and the increasing 
adoption of AI tools in radiology work-flows (1-4). 

Beyond lesion detection, classification, and segmentation, innovative AI solutions are 
being deployed to enhance radiology workflows, from image acquisition to reporting. 
Deep-learning reconstruction models are effectively implemented for CT and MRI image 
optimization and reconstruction, reducing scan time for patients without compromising 
image quality (5-9). AI-powered protocol recommendation tools have improved and 
standardized cross-sectional image acquisition, resulting in better image quality (10-
11). The generation of synthetic CT images from MRI scans using generative AI models 
has shown promising results in reducing radiation burden for patients (12-13). Similarly, 
generative adversarial networks (GAN) for the purpose of synthetic contrast-enhanced 
image generation from non-contrast studies have presented a viable alternative 
for patients with contraindication for iodinated contrast medium (14-16). Recurrent 
neural networks (RNNs) and, more recently, transformer architectures, which form 
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Abstract
Rapid advancements in artificial intelligence (AI) are transforming healthcare delivery. 
However, the adoption of AI in healthcare delivery and radiology service in low- and-
middle-income countries (LMICs) lags behind advances in high-income countries 
(HICs). As a result, LMICs are not yet reaping the benefits of AI witnessed in the rest of 
the world. This disparity in utilization of AI is likely to lead to further widening of the 
existing gaps between these regions in economic prosperity and health. Our article 
describes the existing opportunities and rationale for investing in AI adoption in LMICs. 
It also highlights the potential benefits of AI in healthcare and medical imaging in the 
context of emerging and developing countries. Finally, a path forward for equitable AI 
development and usage is presented.
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the backbone of large language models (LLMs), are being 
utilized for report classification tasks, to extract structured 
data from narrative radiology reports, generate impressions 
from the body of radiology reports and provide lay summary 
for patients (17-18).

Although not as established as in HICs, adoption and 
integration of AI into healthcare and radiology services in 
LMICs has shown promising results in addressing challenges 
in healthcare such as shortages of radiologists. However, 
these regions are underprepared for comprehensive 
expansion of AI (19). Beyond just importing commercially 
available AI tools, countries in this part of the world should 
be enabled to leverage their potential by curating medical 
imaging data, and training and deploying AI models that 
meet their local needs.  

The "why": Opportunities and rationale for 
investment in AI in LMICs

Expansion of radiology services and the shift to digital 
systems

The expansion of AI in clinical radiology is closely linked 
to growth in digital imaging services. Availability of 
radiographic equipment, information systems and 
robust IT infrastructure are the minimum essential for 
AI implementation. Even though the ratio of imaging 
equipment to population is still very low in LMICs, these 
regions have seen significant growth in investment on 
imaging equipment in recent years. In addition to installation 
of new diagnostic imaging machines, conversion of 
analogue systems to digital has also seen significant growth 
in these countries (20). The expansion and digitization 
of radiology services could lead to the generation of 
increasingly large volumes of medical imaging data, which 
— if aided with proper IT infrastructure and expertise — will 
offer an opportunity for advancement of AI technology in 
a local context. The acquisition of medical imaging data 
pipelines will then enable LMICs to create clinical imaging 
data repositories and ensure data ownership and security. 

Scarcity of radiologists

A compelling rationale for adopting diagnostic AI tools in 
LMICs is the scarcity of radiologists, which poses a major 
setback in the delivery of quality healthcare services in 
these regions. This problem is particularly pronounced in 
rural settings, as radiologists tend to concentrate in major 
cities (21). Teleradiology services have been shown to be 
effective in bridging this gap in LMICs (22-23). Additionally, 
the integration of AI technology in teleradiology platforms 
has shown promising results in further improving radiology 
services, particularly in the fight against pulmonary 
tuberculosis (TB) in Africa and other developing regions. In 
addition to triaging symptomatic patients, CXR is currently 
being implemented in community-based screening 
programs in countries with a high burden of pulmonary 

TB (24). Computer assisted detection (CAD) software has 
emerged as a practical solution in obtaining accurate and 
timely interpretation of the large volume of CXR studies 
performed in programs where radiologists are lacking. 
Where radiologists are present, such tools have been found 
to improve radiologists’ diagnostic performance and timely 
reporting, which further highlights the role AI could play in 
improving the efficiency of healthcare delivery in LMICs. 

A practical example of such AI integration can be found at 
the authors’ institution (Partners In Health Lesotho) where a 
CAD system called qXR, created by Qure.ai (Mumbai, India) 
(25), is integrated with a web-based platform called qTrack 
that enhances and streamlines TB diagnosis and treatment. 
Chest x-rays from five remote clinics in Lesotho are de-
identified and uploaded onto a cloud server where they will 
receive a probability score for the presence of TB from the 
AI algorithm. The image and AI label are then reviewed by 
a radiologist based in the capital, Maseru. The radiologist’s 
final report is made immediately available to the clinical 
caregiver at the remote clinics, as well as to consultants in 
the capital. This approach has enhanced the fight against 
TB in Lesotho, which has one of the highest TB burdens 
(664 cases per 100,000 people, and a remarkably low 
detection rate of 32-47%) (26-28). According to unpublished 
programmatic data from PIH-Lesotho, the TB detection rate 
has risen from a mere 22% to 63% within one year of the 
implementation of this program.

Ensuring equitable economic benefits of AI for LMICs

Another persuasive reason for investing in the expansion 
of medical AI in LMICs is its contribution to local economic 
growth. The global market share of AI in medical imaging 
was estimated to be over 1 billion USD in 2023. However, 
this figure is expected to be followed by an exponential 
compound annual growth rate (CAGR) of nearly 35% in the 
years 2024-2030. In addition to a linear increase in revenue, 
this massive growth has brought huge employment 
opportunities in HICs. It has also provided lucrative 
business milieu for smaller AI and tech startups to scale 
up their businesses through partnerships, product or 
service sales, and mergers and acquisitions (4). However, 
this phenomenon is largely true in the developed world 
and is nearly non-existent in LMICs. Unless governments 
in LMICs and their international partners carefully plan and 
strategically implement the groundwork for adoption of 
AI in healthcare and other sectors, countries in this region 
will continue to lose potential economic benefits from this 
massive industry, further widening the existing economic 
inequality between LMICs and wealthier nations. 

Unfortunately, LMICs have a long way to go in creating the 
basic economic and regulatory frameworks for innovation 
in AI. According to the International Monetary Fund’s AI 
Preparedness Index (AIPI) — which considers countries’ 
digital infrastructure, human capital, labor policies, 
innovation, economic integration and regulation — most 
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developing countries, particularly African nations, score far 
below the overall average. The AIPI also highlights how far 
behind these countries are in AI adoption, and the need to 
”lay a strong foundation by investing in digital infrastructure 
and digital training for workers” (19).

Finally, a discussion about equitable distribution of AI 
benefits would not be complete without addressing 
the potential challenge of exploitative practices from AI 
companies, where imaging data repositories from LMICs 
could be utilized to develop new or improve on existing AI 
tools without proper engagement or meaningful advantage 
to the communities from which the data is drawn. Ensuring 
strict adherence to guidelines of good clinical practice 
cannot be stressed enough. Ethical principles and guidelines 
meant for development of new drugs and clinical trials 
should be applicable in development of medical AI tools 
(29). In this regard, AI-specific ethical guidelines, such as the 
European Commission’s Ethics Guidelines for Trustworthy 
AI could serve as a comprehensive resource to address this 
challenge (30). 

Need for monitoring and quality control of medical AI in 
LMICs

A growing number of commercially available AI tools 
are currently being integrated into radiology workflows 
in developing countries. While this is beneficial in many 
ways, the deployment process requires careful planning, 
preparation and paying due consideration to the many 
pitfalls that could arise with AI deployment. While most of 
the commercially available diagnostic AI tools have been well 
tested and validated, it is expected that their performance 
will be lower than reported when exposed to new patient 
populations. This problem of generalizability largely arises 
from a lack of representativeness among training datasets. It 
is also well known that biases embedded in training datasets 
are likely to be carried over to the final AI algorithm, which 
negatively affects the model’s performance when deployed 
in a new data environment. In the case of diagnostic AI tools 
in particular, it is reported that algorithms are able to tell the 
race, body type and gender of patients from medical images 
across a variety of modalities regardless of anatomic regions 
scanned (31-32). It should then be expected that a particular 
AI model might use those non-clinical features to carry out 
disease classification or other tasks. Moreover, according to 
recent guidelines, ensuring nondiscriminatory performance 
of clinical AI tools across racial or other group identifiers is 
incumbent on the institution deploying those tools in clinical 
workflows (33). 

Even where such biases are minimal, AI features that are 
predictive in one subset of a population for the purpose of 
image classification are likely to be less effective in another. 
These problems highlight the need for employing multi-site 
training datasets (‘federated’ learning), or enabling post-

market automated feature engineering where AI algorithms 
learn to discover relevant features on their own when 
deployed in new settings (34). 

In addition to changes in population demography, the 
adoption of newer machines or imaging protocols in 
radiology workflows inevitably leads to decline in AI 
performance over time. Updates made to an existing AI 
tool by a vendor, or introduction of a newer version, may 
also result in unintended poor performance outcomes (35). 
Very rarely, exposure of a continuously learning AI to an 
unusual data point may lead to ‘catastrophic forgetting’ 
which severely compromises the AI’s performance (34). It 
is therefore crucial that institutions or national programs 
planning to adopt commercially available AI tools be aware 
of these caveats and devise methods to identify and mitigate 
such problems. This usually involves testing and validating 
the performance of adopted AI algorithms in a new, well-
curated and locally representative dataset during adoption, 
and instituting periodic or continuous AI monitoring post 
deployment (35). Furthermore, re-training of adopted AI 
tools could help customize and improve the performance 
of AI algorithms to match the target population where such 
tools are deployed (36). Inevitably, the infrastructure and 
other capacity-building measures meant for AI testing and 
monitoring are expected to lead to the creation of data 
pipelines, imaging data repositories and enhanced expertise 
which will, in the long run, create an enabling environment 
for research, local evidence generation and innovation in 
LMICs. 

The "how": The way forward

For the reasons discussed above and more, it is imperative 
that LMIC governments and their global partners strategize 
and make a commitment to facilitate adoption of AI in 
healthcare — especially in clinical imaging — in the near 
future. This essentially translates to helping LMICs build 
robust IT infrastructure, institute health information systems, 
invest in human capital development, and devise regulatory 
frameworks.

Improving IT infrastructure is fundamental in facilitating the 
adoption of AI and other modern healthcare technologies in 
LMICs. Unfortunately, poor internet connectivity still poses a 
significant hurdle in the adoption of telemedicine, disrupting 
real-time consultations and delaying critical diagnoses 
(37). According to the International Telecommunication 
Union (ITU), one third of the global population remains 
offline. More importantly, the disparity in internet usage 
between HICs (93%) versus LMICs (54%) and urban (83%) 
versus rural populations (48%) is growing wider (38,39). 
Removing technical and infrastructural barriers cannot be 
overemphasized if meaningful gains are to be made in AI 
technology adoption in LMICs.
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When it comes to building strong information systems, 
particularly picture archiving and communication systems 
(PACS), the prohibitive cost of owning and maintaining IT 
infrastructure, expensive subscription fees for software, 
frequent power cuts, and inadequate networking were 
major hurdles in the past (40). However, with recent 
advances in cloud-based IT services and the availability of 
reliable, open-source or affordable applications, the cost of 
acquiring robust, secure and sustainable PACS and other 
health information systems in underdeveloped setups 
should not be out of reach. Expanding these services not 
only to tertiary centers in major cities, but also to district 
hospitals and health centers, should be prioritized. The 
expansion of such information systems will then play a 
pivotal role in enhancing imaging data curation and the 
creation of local imaging data repositories for the training 
and deployment of AI in LMICs. 

Similarly, addressing the shortage of trained human 
capital in the field of AI should be given due attention. An 
accelerated and sustainable adoption of AI in healthcare 
can only occur with the full engagement of clinicians and 
radiologists. It is evident that the full benefit of clinical AI 
tools is dependent upon the rate of penetration of this 
technology among physicians, which is in turn dependent 
upon behavioral and technological factors that affect the 
pace of adoption of such innovative solutions. Perceived 
usefulness, ease of use, accountability and explainability 
are known to strongly influence adoption of any form of 
technology, including AI (41-42). Foundational knowledge 
of the working principles behind clinical AI tools are likely 
to increase physicians’ and radiologists’ trust in the specific 
AI tool in question (36). It is therefore equally important to 
familiarize end users, including radiologists, clinicians and 
other healthcare providers, with not only the AI tools but 
also the basics of their underlying logic. 

In addition, it is essential that institutions wishing to deploy 
AI tools are aware of the drawbacks of human-AI interaction 
including automation bias, deskilling and algorithmic 
aversion, and devise ways to mitigate these problems (35). 
To this end, universities and medical schools should consider 
incorporating concepts of imaging informatics and AI into 
their medical and radiology residency curricula. Faculty 
members should be provided with opportunities to advance 
their knowledge in the field of AI through subscriptions to 
online resources and virtual or in-person training. Fostering 
collaboration between universities in LMICs with their 
counterparts in advanced nations, arranging exchange 
programs for experience sharing, providing on-the-job 
training, and designing collaborative projects with industry 
leaders and other willing partners will be essential for 
the fast adoption of AI in these disadvantaged regions. In 
this regard, RAD-AID’s three-pronged strategy — clinical 
radiology education, infrastructure implementation 
and phased AI introduction — could serve as a guiding 
framework for implementation of AI in LMICs (43). 

In summary, LMICs lag far behind in the adoption of AI in 
healthcare, particularly in clinical imaging. If allowed to 
continue, this will inevitably contribute to the ever-widening 
disparity in health indices between these countries and 
the rest of the world. More than just importing AI tools, 
emerging and developing nations should be assisted in 
building their own, sustainable, customized and locally 
relevant AI solutions in healthcare. However, this enormous 
task should not be left for LMICs to shoulder alone.
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